A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.
Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.
Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.
Input Specification:
Each input file contains one test case. Each case consists of two positive numbers N and K, where N (≤1010) is the initial numer and K (≤100) is the maximum number of steps. The numbers are separated by a space.
Output Specification:
For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.
Sample Input 1:
67 3
Sample Output 1:
484
2
Sample Input 2:
69 3
Sample Output 2:
1353
3
题目大意:对于给定的数字,计算它本身与其倒过来的数字之和,判断是不是回文数,如果是,输出这个回文数和计算结果;如果不是,将其和继续计算,直到是回文数。最多计算K次,如果K次还不是回文数,给出第K次的结果。
这道题注意,给定的数的最大值是10000000000,K最大是100,在极端情况下会超过unsigned long long int,所以不能用整数来存储,只能用字符串。
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
string add(string a, string b){
//字符串表示的数字进行加法运算
string ans;
int jw = 0; //进位
int i = a.length()-1, j = b.length()-1;
for(;i>=0 && j>=0; i--, j--){
int n = a[i] + b[j] - '0' * 2 + jw;
jw = 0;
if(n >= 10){
n -= 10, jw = 1;
}
ans += (n + '0');
//cout << a[i] << ' ' << b[i] << endl;
}
while(i >= 0){
if(jw){
ans += (a[i--]+1);
jw = 0;
}
else ans += (a[i--]);
}
while(j >= 0){
if(jw){
ans += (b[j--]+1);
jw = 0;
}
else ans += (b[j--]);
}
if(jw) ans += '1'; //处理进位
reverse(ans.begin(), ans.end()); //反转
return ans;
}
int main(){
string num;
int n;
cin >> num >> n;
int cnt = 0;
while(n--){
string rev = num;
reverse(rev.begin(), rev.end());
//cout << cnt << ' ' << num << ' ' << rev << endl;
if(rev == num){
cout << num << endl << cnt;
return 0;
}
else num = add(num, rev);
cnt++;
}
cout << num << endl << cnt;
return 0;
}
上面的代码其实不是最优的,因为add函数考虑到了两个位数不一样的数字相加的对位、处理末尾进位的问题,其实这道题是自己和自己反过来相加,加数和被加数的位数一定是相同的,所以不必考虑对位。
因而add函数可以精简成下面的样子:
string add(string a, string b){
int jw = 0;
string ans;
for(int i = b.length() - 1; i >= 0; i--){
int n = a[i] + b[i] - 2 * '0' + jw;
jw = 0;
while(n >= 10)
n-=10, jw++;
ans += (n + '0');
}
if(jw) ans += (jw + '0');
reverse(ans.begin(), ans.end());
return ans;
}